Non-generic weak transfer via the generalized doubling method and the Converse Theorem.

Eyal Kaplan, Bar Ilan University.

In this talk I will discuss the generalized doubling method, focusing on its recent application to the weak transfer of automorphic representations from classical groups to general linear groups. I will briefly review the method of the Converse Theorem, the global integral representation, the definition of the local gamma factor and its fundamental properties. Then, I will present a new local device

which was used for the analytic aspects of the weak transfer.

The talk is based on several joint works with Cai, Friedberg, Ginzburg and Gourevitch.

Ramification of weak Arthur packets for p-adic groups.

Maxim Gurevich, Technion.

Arthur packets are collections of representations of p-adic groups that naturally occur when decomposing the group's automorphic spectrum. Yet, their role in the local theory is far from clear.

With Emile Okada, we investigate a concept of weak Arthur packets for split classical groups, characterized entirely through microlocal invariants. This framework is designed to parallel the Adams-Barbasch-Vogan approach to analogous notions for Lie groups.

One key finding revealed a curious structure: Weak Arthur packets comprise precisely the unions of those 'automorphic' Arthur packets that are 'weakly unramified' in a suitable sense.

Martingale central limit theorems for weighted sums of random multiplicative functions.

Ofir Gorodetsky, Oxford.

A random multiplicative function is a multiplicative function alpha(n) such that its values on primes, (alpha(p))_(p=2,3,5,...), are i.i.d. random variables. The simplest example is the Steinhaus function, which is a completely multiplicative function with alpha(p) uniformly distributed on the unit circle. A basic question in the field is finding the limiting distribution of the (normalized) sum of alpha(n) from n=1 to n=x, possibly restricted to a subset of integers of interest. This question is currently resolved only in a few cases. We shall describe recent work where we are able to find the limiting distribution in many new instances of interest. The distribution we find is non-gaussian, in contrast to all previous works.

This is joint work with Mo Dick Wong (Durham University).

Distinction of the Steinberg representation with respect to symmetric subgroups.

Guy Shtotland, Ben Gurion University.

We study the distinction of the Steinberg representation of a split p adic group G with respect to a split symmetric subgroup $H \subset G$. We relate this problem to the problem of determining the existence of a harmonic function on a certain hyper graph related to X = G/H. We show that the Steinberg representation is H distinguished only if H is quasi-split and that $GL_{2n+1}/GL_n \times GL_{n+1}$ is essentially the only example where H is quasi-split but the Steinberg representation isn't H distinguished. We confirm the relative local Langlands conjecture for the Steinberg representation by showing that the Steinberg representation is H distinguished if and only if its parameter factors through the dual group of H0, H1, H2, H3, H3, H4, H4, H5, H4, H5, H5, H5, H6, H6, H7, H8, H9, H9,